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Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic and magnetic
Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these
high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of
MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced
all of the most influential physics of the flows and magnetic fields? In this Report, a metric is defined to indicate
whether the necessary physics of interest has been captured. It is found that current computing resources will
typically not be sufficient to achieve this minimum state metric.

Introduction.—Magnetohydrodynamic (MHD) turbulence
[1, 2] has been widely employed as a physical model in sim-
ulations and modeling of space physics and astrophysics sys-
tems. As is well known, the number of degrees of freedom
in turbulent flows can be estimated using non-dimensional
parameters such as the Reynolds number (Re) and magnetic
Reynolds number (Rm). These can be interpreted as ratios
of the nonlinear terms to the dissipative terms in the govern-
ing MHD equations. In space physics and astrophysics sys-
tems, estimates for Re and Rm are often in excess of 105,
sometimes by many orders of magnitude. Direct numerical
simulation of such high Reynolds number systems would re-
quire resolutions that are well beyond what can be achieved
using current and foreseeable supercomputers. Thus, it is
highly desirable to determine whether the computationally
feasible simulations—with much lower Re and Rm—still cap-
ture the most important physics of the flows of interest, despite
the inevitable loss of information associated with the lower
Reynolds numbers. Here we employ the minimum state con-
cept [3] along with recent results on the wavenumber locality
of nonlinear interactions in MHD turbulence [4] to estimate
the minimum Reynolds numbers needed for accurate simula-
tion of the energy-containing range in incompressible MHD
turbulence.

The equations of incompressible three-dimensional MHD
are

∂u

∂t
+ ν∇2u = −u ·∇u + b ·∇b−∇p, (1)

∂b

∂t
+ η∇2b = −u ·∇b + b ·∇u, (2)

along with the solenoidality constraints∇·u = 0 and∇·b = 0
[e.g., 1]. Here, u is the fluid velocity and b the magnetic field,
expressed in Alfvén speed units. Equations (1)–(2) are written
so that the nonlinear terms are isolated on the RHS, along with
the pressure gradient. Note that the nonlinear terms all have
the same structure, ∼ α ·∇β, where α and β can be either u
or b.

We begin by defining the basic requirement of a minimum
state, namely capturing the key physics of the flow of in-
terest. From an applications perspective the most important
group of scales is often the energy-containing range. The in-
tegrity of the evolution of modes in this range can be pro-
tected by demanding that the (direct) interactions between

FIG. 1. (Color online) Sketch of a kinetic energy spectrum indicat-
ing the energy-containing, inertial, and dissipation ranges, and their
wavenumber boundaries. The idea behind the minimum state is that
the inertial range should be long enough so that direct interactions
between modes in the energy-containing and dissipation ranges are
energetically weak, indicated by the dashed (green) arrow. Some
“strong” interactions are indicated via the solid (green) arrows.

them and modes in the dissipation range are weak [3]. In such
situations the energy-containing and dissipation range scales
will be separated by an inertial range, through which the en-
ergy originally resident at energy-containing scales cascades
to smaller scales [5]. Moreover, the modes in the energy-
containing range will then interact dominantly with them-
selves and modes in the inertial range. It seems likely that
there will be critical values of Re and Rm below which this
requirement cannot be satisfied. These Reynolds numbers de-
fine a minimum state flow. See Figure 1.

To quantify these ideas we will extend a criterion devel-
oped for Navier–Stokes (NS) turbulence [3] to the MHD case.
Specifically, a minimum state flow is defined as one for which
the (normalized) energy flux at the high-k end of the iner-
tial range is half that at the low-k end [3], where k = |k|
is the Fourier wavenumber. The remainder of the paper pro-
vides the necessary definitions and details required to obtain
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the Reynolds numbers for a minimum state.
Lengthscales.—To calculate the minimum state we require

estimates of the wavenumbers which bound the kinetic and
magnetic inertial ranges. In particular, their scaling with
Reynolds number is needed. Let $ denote the outer scale,
or correlation length, of the velocity field, and let $B be the
equivalent quantity for b. Further, let ũ and b̃ be character-
istic rms values for the velocity and magnetic fields. Stan-
dard definitions of the (outer scale) kinetic and magnetic
Reynolds numbers are Re = ũ$/ν and Rm = ũ$/η. We will
also make use of an alternative magnetic Reynolds number,
Rm∗ = B̃$B/η, which is based entirely on typical magnetic
quantities [6]. The Kolmogorov dissipation scale for the ki-
netic energy is defined in the usual way as $diss = (ν3/ε)1/4,
where ε is the kinetic energy dissipation rate.

For NS turbulence, Dimotakis [7] suggested defining the in-
ertial range as the set of scales which lie below the Liepmann–
Taylor scale [8],

λLT =
2π

kLT
≈ 5 Re−1/2$, (3)

and above the inner viscous scale [e.g., 9],

λν =
2π

kν
≈ 50$diss ≈ 50 Re−3/4$. (4)

Operationally, the latter is defined as the scale where the spec-
trum departs from the≈ −5/3 powerlaw [9–11]. The energy-
containing range is thus treated as having k ! kLT, and the in-
ertial range as k ∈ [kLT, kν ]. We assume that the same bound-
aries hold for MHD turbulence (but see the final section) and
define the magnetic versions analogously:

ζLT =
2π

kB
LT
≈ 5 Rm∗−1/2$, (5)

ζη =
2π

kη
≈ 50 Rm∗−3/4$. (6)

Energy Fluxes and Locality.—For turbulent systems, the
flux of energy in Fourier space is a central concept, and nu-
merous investigations of it have been performed for both NS
[e.g., 12–14] and MHD [e.g., 4, 15–19] systems. Each of the
nonlinear terms in Eqs. (1)–(2) is associated with such a flux,
which we denote herein as Παβ . An important feature of the
flux functions is their scaling with wavenumber, which pro-
vides information on the extent to which the contributing in-
teractions are local in spectral space. The different scaling
properties of these fluxes will be important in determining the
minimum state Reynolds numbers.

Using direct numerical simulation databases, Domaradzki
et al. [4] calculated normalized versions of the four energy
flux functions, which they denoted as Παβ(k|kc). These
represent the flux of energy to wavevectors with magnitudes
greater than kc, due to wavevector triads which have at least
one member with a magnitude less than k (and normalized by
the total flux through kc for the particular α ·∇β term). Plot-
ting these as a function of k/kc reveals approximate powerlaw
scaling for three of the four normalized fluxes. (See Figure 2

in [4].) Here we express their results in terms of the scale
disparity parameter [13, 14],

s =
max(k, p, q)
min(k, p, q)

, (7)

where k, p, and q are the magnitudes of wavevectors making
up an interacting triad k = p + q. This re-expression is con-
venient since k/kc ≈ 1/s and thus, Παβ(k|kc) ≈ Παβ(1/s).
The scale disparity parameter is a measure of the elongation
of the triads and has been used to characterize the degree of
locality of interactions [e.g., 20].

The scalings observed by Domaradzki et al. [4] are

Πuu(s) ∼ Πub(s) ∝ s−2/3, (8)

and

Πbb(s) ∝ s−1/3. (9)

The flux Πbb is associated with removing the kinetic energy
from the velocity field. It is the least local of these three flux
functions. These numerical results are consistent with theo-
retical predictions [19]. Note that for NS turbulence, theory
and simulations [13, 14, 21–27] suggest that Π(s) ∼ s−4/3,
a scaling which is considerably more local than the MHD re-
sults.

The remaining flux function, Πbu, is associated with the
process of energy transfer to the magnetic field. The same
study [4] found that it was non-universal and that it did not
follow an s−M scaling law. It does, however, decrease faster
than Πuu and Πub. While the reason for the different behavior
of Πbu is at present not clear, it is fortunate that the falloff is
so steep since this suggests extremely local interactions for the
term. Thus its detailed form will not affect the analysis here.

Minimum State.—For large enough Reynolds numbers, the
energy-containing range of a turbulent flow will have very
weak direct interactions with the dissipation range. As noted
above, the minimum state is the lowest Reynolds number
flow of this kind [3]. In flows that have a shorter inertial
range, there will be significant direct interactions between the
energy-containing and dissipation ranges, and the integrity of
the energy-containing range modes will not be maintained. To
ensure that strong direct couplings between these two ranges
are absent we need to quantify what ‘strong’ means in this
context, and then determine the length of the inertial range in
a minimum state.

Here we define the direct interactions between the energy-
containing and dissipation ranges as weak if the energy flux at
the high-k end of the inertial range (e.g., at kν) is at most half
that at the low-k end (e.g., at kLT).

From numerical simulations, the peak of a normalized flux
function, Π(sp), can be found, along with the value of s at
which it occurs, sp. Let sh be the scale disparity param-
eter where the normalized flux reduces to half of its peak
value, i.e., Π(sh) = 1

2Π(sp). The s−M scaling properties
of Eqs (8)–(9) lead to

sh

sp
= 2(1/M). (10)
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This ratio can be used to determine the values of kν and kη as-
sociated with the minimum state. The underlying idea is that
Eq. (10) gives the length of the (minimum state) inertial range,
in units of the Liepmann–Taylor wavenumber. Hence, we de-
fine kh = (sh/sP )kLT and equate it to the high wavenumber
end of the inertial range. For the momentum equation, the
least local nonlinear term is Πbb, yielding sh/sp = 8 and an
inertial range wavenumber interval of [kLT, 8kLT]. For the in-
duction equation we obtain sh/sp =

√
8 ≈ 3 and an inertial

range of [kB
LT, 3kB

LT].
We are now in position to calculate the critical Reynolds

numbers for a minimum state. For the momentum equation
we use Eqs. (3) and (4) in 8kLT = kν , obtaining

ReMS ≈ 4.1× 107. (11)

Proceeding similarly for the induction equation, 3kB
LT = kη

yields

Rm∗
MS ≈ 8.1× 105. (12)

This is some 50 times smaller than ReMS as a consequence
of the more local nature of the nonlinear interactions in the
induction equation. We recall that NS turbulence is even more
local with Π(s) ∼ s−4/3 [3]. Using 23/4 ≈ 2 in Eq. (10), this
leads to a minimum state Reynolds number of 1.6×105, which
is significantly smaller than the MHD values [3].

Summary and Discussion.—We have extended the concept
of a minimum state flow to the case of MHD turbulence,
which is a widely used model in space physics and astro-
physics applications. By insisting on the integrity of the
energy-containing range dynamics, we have determined min-
imum Reynolds numbers for MHD simulations and experi-
ments below which this condition is unlikely to be satisfied.
These ‘critical’ values of Re and Rm∗ are found to be rather
large, as a consequence of the degree of nonlocality associ-
ated with the nonlinear terms in the MHD equations. As far
as simulations of the minimum state are concerned, they are
probably not feasible with current computing resources. How-
ever, they may become feasible within a few years.

Note that the numerical accuracy of a simulation for given
Reynolds numbers is a distinct issue, relative to the above

discussed ‘physical integrity’ of a simulation. A recent ex-
ploration of the accuracy requirements for 2D MHD tur-
bulence [28] concluded that sufficient accuracy is obtained
if simulations retain wavenumbers a factor of three greater
than the (Kolmogorov) dissipation wavenumber. If a smaller
wavenumber range is retained then the accuracy of fourth-
order (and higher-order) quantities like the kurtosis was com-
promised.

In closing we briefly mention some possible extensions and
complications associated with the isotropic MHD model em-
ployed above. As is well known, the presence of an en-
ergetic large-scale (e.g., mean) magnetic field (B0) induces
anisotropy in u and b [29–32]. This anisotropy could result in
somewhat different critical Reynolds numbers, although the
qualitative results presented herein would likely still hold.

Another issue, is our assumption that the NS inertial range
boundaries carry over essentially unchanged to the MHD case.
However, in MHD the inertial range boundaries may scale a
little differently than they do in the NS case. For example, the
energy spectrum has a bottleneck feature near the dissipation
scale [e.g., 33], but this appears to be more pronounced in NS
turbulence than in MHD turbulence [e.g., 34]. Thus, our esti-
mates for kν and kη could be argued to be too small, leading
to estimates for the critical Reynolds numbers which are too
large.

Finally, we emphasize that in actual space physics and as-
trophysics systems the nature of the dissipation mechanisms
may be quite different from the uniform viscous and resis-
tive dissipation of Eqs. (1)–(2). In particular, the dissipation
scales are not expected to be universal. Plasma effects, such as
damping by waves at ion and/or electron gyroradii or inertial
lengths may be important [35–38].
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